On the Teichmüller geodesic generated by the L-shaped translation surface tiled by three squares

نویسندگان

  • Olivier Rodriguez
  • OLIVIER RODRIGUEZ
  • O. RODRIGUEZ
چکیده

We study the one parameter family of genus 2 Riemann surfaces defined by the orbit of the L-shaped translation surface tiled by three squares under the Teichmüller geodesic flow. These surfaces are real algebraic curves with three real components. We are interested in describing these surfaces by their period matrices. We show that the only Riemann surface in that family admitting a non-hyperelliptic automorphism comes from the 3-square-tiled translation surface itself. This makes the computation of an exact expression for period matrices of other Riemann surfaces in that family by the classical method impossible. We nevertheless give the solution to the Schottky problem for that family: we exhibit explicit necessary and sufficient conditions for a Riemann matrix to be a period matrix of a Riemann surface in the family, involving the vanishing of a genus 3 theta characteristic on a family of double covers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surfaces Generated by Translation Surfaces of Type 1 in I^1_3

In this paper, we classify surface at a constant distance from the edge of regression on translation surfaces of Type 1 in the three dimensional simply isotropic space I^1_3 satisfying some algebraic equations in terms of the coordinate functions and the Laplacian operators with respect to the first, the second and the third fundamental form of the surface. We also give explicit forms of these ...

متن کامل

Ergodic infinite group extensions of geodesic flows on translation surfaces

We show that generic infinite group extensions of geodesic flows on square tiled translation surfaces are ergodic in almost every direction, subject to certain natural constraints. Recently K. Fra̧czek and C. Ulcigrai have shown that certain concrete staircases, covers of square-tiled surfaces, are not ergodic in almost every direction. In contrast we show the almost sure ergodicity of other con...

متن کامل

ENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE

There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...

متن کامل

COMPARISON OF EPICUTICULAR WAX ON NEEDLES AND STEMS OF Pinus eldarica WITH ITS TWO NATURALLY GENERATED FORMS

Plant cuticles are covered by epicuticular waxes with considerable ultrastructural and chemical diversity and have great systematic significance. Pinus elderica is a rare pine found naturally only in desert environment southeast of Tbilisi (Georgia). This tree have been probably introduced to Iran about 800 years ago and gradually altered in both shape and size in Nashtifan-Khaf, and changed in...

متن کامل

Schwarz Triangle Mappings and Teichmüller Curves: Abelian Square-tiled Surfaces

We consider normal covers of CP with abelian deck group, branched over at most four points. Families of such covers yield arithmetic Teichmüller curves, whose period mapping may be described geometrically in terms of Schwarz triangle mappings. These Teichmüller curves are generated by abelian square-tiled surfaces. We compute all individual Lyapunov exponents for abelian squaretiled surfaces, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017